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ABSTRACT 
This paper suggests an approach to automatic scenario generation 
from environment models for testing of real-time reactive 
systems. The behavior of the system is defined as a set of events 
(event trace) with two basic relations: precedence and inclusion. 
The attributed event grammar (AEG) specifies possible event 
traces and provides a uniform approach for automatically 
generating, executing, and analyzing test cases. The environment 
model includes a description of hazardous states in which the 
system may arrive and makes it possible to gather statistics for 
system safety assessment. The approach is supported by a 
generator that creates test cases from the AEG models.  We 
demonstrate the approach with case studies of prototypes for the 
safety-critical computer-assisted resuscitation algorithm (CARA) 
software for a casualty intravenous fluid infusion pump and the 
Paderborn Shuttle System. 

Categories and Subject Descriptors 
D.2.5 Testing and Debugging: Testing tools  

General Terms 
Design, Reliability 

Keywords 
Model-based testing, testing automation, reactive and real time 
system testing 

1. Introduction 

Testing is both a time- and effort-consuming process. Testing 
real-time reactive systems is complicated: such systems 
continuously interact with their environment and both their inputs 
and outputs should satisfy timing constraints. Interactions with the 

tester often introduce unacceptable overhead that render the test 
results meaningless. Such systems can only be tested via an auto-
mated testing environment with processing characteristics 
sufficiently close to the actual operating environment [KS]. 
Modeling can be used to gain a better understanding of the 
environment.  
Until recently, most approaches to test automation have been 
based on some form of formal specification of the requirements 
[Bl, CL, DJ] and/or assertions describing the correct behavior of 
program code segments [BK, KA]. Software safety requirements 
can only be tested by evaluating the system within the context of 
its operating environment. For example, a common approach to 
verifying safety requirements involves developing two separate 
models: one for the system under test (SUT) and the other for the 
environment (or equipment) under its control. The two models are 
then exercised in tandem to check whether the simulation ends up 
in known hazardous states under normal operating conditions and 
under various failure conditions [AL]. Hence, correct modeling of 
the environment is as important as the correct analysis of the 
system requirements.  
It has become a common practice for engineers to analyze system 
behaviors from an external point of view using use cases. UML 
use case scenarios are written in natural language and focus on the 
events and responses between the actors and the system. 
Functional requirements can be derived from the events received 
by the system and the proper responses generated by the system. 

The major paradigms for modeling system behavior are based on 
different variations of finite state machines such as statecharts and 
message sequence charts in UML. Active research in this area 
focuses on different aspects of behavior specification based on 
UML statecharts, message sequence diagrams, or other types of 
extended finite state machines, like timing automata [HL] or Petri 
nets. In [WP], Wang and Parnas proposed to use trace assertions 
to formally specify the externally observable behavior of a 
software module and presented a trace simulator to symbolically 
interpret the trace assertions and simulate the externally 
observable behavior of the module specified.  Their approach is 
based on algebraic specifications and term rewriting techniques 
and is only applicable to non-real-time applications. In [ABK], 
Alfonso et al. presented a formal visual language for expressing 
real-time system constraints as event scenarios (events and 
responses) and provided a tool to translate the scenarios into 
observer timed automata, which can be used to study properties of  
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the formal model of the system under analysis via model checking 
and run-time verification. While there are a lot of similarities 
between the approach presented in [ABK] and ours, the [ABK] 
approach is effective for modeling static environments (with fixed 
scenarios) where as ours, which is based on event grammar, is 
more effective in specifying dynamic environments with an 
arbitrary number of actors (and concurrent events). 

A major feature of our approach is the notion of event trace as a 
formal model of behavior. Event grammars are one of the possible 
frameworks to utilize this notion. They are text-based, have a 
smaller semantic distance from the use case scenarios than the 
state machines, and are well suited to model environments 
described via use case scenarios. Event grammars are convenient 
in specifying dynamic environments with an arbitrary number of 
actors (and concurrent events), whereas state machines are 
effective for modeling static environments (with predetermined 
numbers of actors).  

Behavior models based on event grammars can be designed not 
only for the environment, but for the SUT as well, and used for 
run-time verification and monitoring. This technique may be used 
to automate test-result verification. Details can be found in 
previously published papers on event grammars for program 
testing, monitoring, and debugging automation [A1], [A2], and 
[AJ]  and will not be discussed in this paper. 

Context-free grammars have been used for test generation, in 
particular, to check compiler implementation, such as in [MK].  
[Ma] provides an outlook in the use of enhanced context-free 
grammars for generation of test data. 

2. Event Traces and Event Grammars 

Our approach focuses on the notion of event, which is any 
detectable action in the environment that could be relevant to the 
operation of the SUT. A keyboard button pressed by the user, a 
group of alarm sensors triggered by an intruder, a particular stage 
of a chemical reaction monitored by the system, and the detection 
of an enemy missile are examples of events. An event usually is a 
time interval, and has a beginning, an end, and duration. An event 
has attributes, such as type and timing attributes. 

Two basic relations are defined for events: precedence 
(PRECEDES) and inclusion (IN). Two events may be ordered in 
time, or one event may appear inside another event. The behavior 
of the environment can be represented as a set of events with 
these two basic relations defined for them (event trace). The 
basic relations define a partial order of events. Two events are not 
necessarily ordered, that is, they can happen concurrently. 
Usually event traces have a specific structure (or constraints) in a 
given environment. 
The structure of possible event traces can be specified by an event 
grammar. Here identifiers stand for event types, sequence 
denotes precedence of events, (…|…) denotes alternative, (* …*) 
means repetition zero or more times of ordered events, […] 
denotes an optional element, {a, b} denotes a set of two events a 
and b without an ordering relation between them, and {*…*} 
denotes a set of zero or more events without an ordering relation 
between them. 

The rule A: B C means that an event of the type A contains (IN 
relation) ordered events of types B and C, correspondingly 
(PRECEDES relation). Both relations imply partial order and are 
transitive, noncommutative, nonreflexive, and satisfy 
distributivity constraints, like 

A IN B and B PRECEDES C implies A PRECEDES C 

Attributed event grammars (AEG) are intended to be used as a 
vehicle for automated random event-trace generation. It is 
assumed that the AEG is traversed top-down and left-to-right and 
only once to produce a particular event trace. Randomized 
decisions about what alternative to take and how many times to 
perform the iteration should be made during the trace generation. 
The major difference with traditional attributed context-free 
grammars is in the nature of objects defined by the grammar: 
instead of sequences of symbols, AEG deals with event traces, 
sets with two basic relations, or directed acyclic graphs. 
The event grammar defines a set of possible event traces – a 
model of behavior for a certain environment. The purpose is to 
use it as a production grammar for random event trace generation 
by traversing grammar rules and making random selections of 
alternatives and numbers of repetitions. All generated concurrent 
events within sets start simultaneously. The DELAY(t) construct 
may be used to indicate delays in the event beginning. For 
example,  
{ DELAY(Rand(0..10)) A, DELAY(Rand(0..10)) B }. 
Each event type may have a different attribute set. An event 
grammar can contain attribute evaluation rules similar to the 
traditional attribute grammar [Pa]. Attribute values are evaluated 
during the AEG traversal. The /action/ is performed immediately 
after the preceding event is completed.  

Example. 
The interface with the SUT can be specified by an action that 
sends input values to the SUT. This may be a subroutine in a 
common programming language like C that hides the necessary 
wrapping code. In the following example of specifying a variety 
of use case scenarios for a simple calculator, we suppose that the 
SUT should receive a message about the button pressed by the 
user corresponding to the appropriate wrapper subroutine: 
enter_digit(), enter_operation(), and show_result(), ( Fig. 
1). 

Use_calculator Calculator_program
enter_digit( )

enter_operator( )
show_result( )

Executable Environment
Model SUT

Fig. 1. The environment model for the calculator scenario 
 
Some event types in this model have attributes associated with 
them. 

Perform_calculation result 
Enter_number digit, value 
Enter_operator operation 

Use_calculator:   (* Perform_calculation *); 

Perform_calculation:  
Enter_number  Enter_operator  Enter_number 



WHEN (Enter_operator.operation == ‘+’) 

/ Perform_calculation.result =  
Enter_number[1].value + 
Enter_number[2].value; / 

ELSE 
/ Perform_calculation.result =  

Enter_number[1].value −  
Enter_number[2].value; / 

        [ P(0.7) Show_result ]; 

The WHEN clause provides for conditional action, 
Enter_number[1] refers to the first occurrence of event in the 
rule Perform_calculation, and correspondingly, 
Enter_number[2] refers to the second occurrence. In this 
example all event attribute evaluation can be accomplished at the 
generation time. The optional clause Show_result will be 
generated according to the probability P(0.7) assigned to it. The 
value of attribute Perform_calculation.result can be used as a 
test oracle for this particular part of the test case. 

Enter_number:  
/ Enter_number.value= 0; / 
(* Press_digit_button  

/ Enter_number.digit = RAND[0..9]; 
  Enter_number.value =  

Enter_number.value * 10 +  
Enter_number.digit; 

enter_digit(Enter_number.digit); / *) (1..6); 

The action /Enter_number.digit = RAND[0..9];/ assigns a 
random value from the interval 0..9 to the digit attribute. Each 
time the rule for Enter_number event is traversed, the number 
of iterations will be selected at random from interval 1..6. The 
traversal of AEG rules is performed top-down and from left to 
right, and for each iteration the attributes Enter_number.digit 
and Enter_number.value are recalculated. The action 
enter_digit(Enter_number.digit) feeds the corresponding 
value to the SUT. 

Enter_operator:   
( P(0.5) / enter_operation(‘+’);  

Enter_operator .operation= ’+’; / | 
  P(0.5) / enter_operation(‘-’); 

Enter_operator .operation= ’-’; / ) ; 

When traversing this rule, the choice of action sending the 
operator symbol to SUT is made based on the probability P(prob) 
assigned to the corresponding alternative. 

Show_result:  /show_result();/ ; 

The event Show_result, when generated, will trigger a call to 
the wrapper subroutine that sends a message to the SUT. 
We can generate a large number of Use_calculator scenarios 
(event traces) satisfying this AEG and each event trace will 
satisfy the constraints imposed by the event grammar. The event 
trace generated from the AEG traversal contains both events and 
actions that should be performed at corresponding time moments. 
The actions (wrapper subroutine calls in this example) can be 
extracted from the event trace and assembled into test-driver code 
which will perform those actions according to the timing 
attributes calculated during the trace generation. Thus, the event 

trace is used as a “scaffold” for test driver generation. Separation 
of the generation phase from test execution is essential for the 
performance of the generated test driver: event selection and 
attribute evaluation can be performed at generation time, with test 
drivers containing only wrapper calls to interact with the SUT, 
that is, the “scaffolding” is removed. 

3. Case Study I: CARA Infusion Pump 

CARA is a safety-critical software-intensive system system devel-
oped by the Walter Reed Army Institute of Research to improve 
life support for trauma cases and military casualties [W1]; it has 
been used as a case study by several software engineering 
research groups [AA]. The main responsibilities of the CARA 
system represented in this model include: 
• To monitor a patient’s blood pressure.  
• To control a high-output patient resuscitation infusion pump. 

3.1 The Environment Model  
Global parameters: 

MINBP minimal blood pressure 
BR patient’s bleeding rate 
RR initial pump rotation rate 
V initial pump voltage 
VRR pump voltage to rotation rate coefficient 
RRF pump rotation rate to flow coefficient 
REMF pump rotation rate to EMF voltage  
 coefficient 
p1 probability of occlusion appearance 
p2 probability of occlusion disappearance 

Event attributes (all values are of integer type, constants True 
and False stand for 1 and 0, correspondingly): 

Patient blood_pressure, volume, bleeding_rate 
Pump rotation_rate, voltage, EMF_voltage, 

 flow, occlusion_on 

The environment model: 
CARA_environment: { Patient, LSTAT, Pump }; 

The model is represented by three concurrent threads of events: 
Patient, LSTAT and Pump ( Fig. 2). Since each of these events 
is an iteration with 1 sec periodic rate (see the corresponding rule 
definitions below), the synchronization is simply implied by this 
timing constraint: all shared attribute values are updated every 1 
sec. Since the generated test driver is a sequential C program, this 
eliminates the data race concerns. 

CARA control 
software

send_arterial_blood_pressure( )

CARA Environment
Model

SUT

Patient

LSTAT

Pump
set_pump_voltage( )

send_plugged_in( )
send_pump_EMF_voltage( )

send_occlusion_on( )
send_occlusion_off( )

Fig. 2. The CARA environment model 



 
Patient: 

/ Patient.bleeding_rate= BR; / 
 (*  /  Patient.volume +=   

ENCLOSING  
CARA_environment -> Pump.Flow –  
Patient.bleeding_rate; 

Patient.blood_pressure =  
Patient.volume/50 – 10;  

         Patient.bleeding_rate += RAND[-9..9]; / 
    WHEN (Patient.blood_pressure > MINBP) 

Normal_condition 
               ELSE 

Critical_condition 
 *) [EVERY 1 sec]; 

This simple model of Patient behavior sets dependencies on the 
Pump behavior, while allowing random fluctuation of the 
patient’s bleeding rate between –9 and 9 ml/sec. The construct 
ENCLOSING CARA_environment -> Pump provides for the 
event Patient to refer to event Pump, which is not within scope 
of this rule, but is available via the parent event 
CARA_environment. This reference mechanism is convenient 
for event-attribute propagation over the derivation tree. The 
[EVERY 1 sec] clause guides the event trace generation with the 
desired event time stamps. For testing and safety assessment 
purposes, the event Critical_condition within the Patient 
event is of special interest.  

LSTAT: Power_on / send_power_on(); / 
      (* / send_arterial_blood_pressure( 

ENCLOSING CARA_environment-> 
Patient.blood_pressure); / 

*) [EVERY 1 sec]; 

LSTAT is a simple model of the part of environment (the 
stretcher) responsible for monitoring the patient’s blood pressure 
measurements. 

Pump:  Plugged_in  
/ send_plugged_in(); Pump.rotation_rate = RR; 

   Pump.voltage = V; / 
{ Voltage_monitoring, Pumping }; 

Voltage_monitoring:  
(*  / ENCLOSING Pump.EMF_voltage =  

                           ENCLOSING Pump.rotation_rate * 
REMF; 

    send_pump_EMF_voltage( 
ENCLOSING Pump.EMF_voltage); / 

*) [ EVERY 5 sec]; 

Pumping:  
(* / ENCLOSING Pump. rotation_rate =   

ENCLOSING  Pump. voltage * VRR; 
ENCLOSING Pump. flow =  

ENCLOSING Pump. rotation_rate * RRF; 
/ 

     CATCH set_pump_voltage( 
ENCLOSING Pump.voltage) 

Voltage_changed 
[ P(p1)  Occlusion 

                     / ENCLOSING Pump.occlusion_on = True; 
                    send_occlusion_on(); / ] 

WHEN (ENCLOSING Pump.occlusion_on) 
[ P(p2) /  

                         ENCLOSING Pump.occlusion_on  =False; 
send_occlusion_off(); / ] 

*) [EVERY 1 sec]; 

The Pump event in turn contains two independent concurrent 
threads. The Voltage_monitoring event thread is responsible 
for sending the pump back EMF voltage measurements to the 
SUT every 5 seconds. The Pumping event thread is responsible 
for updating the rotation rate and the IV flow rate based on the 
voltage set by the SUT. The CATCH construct in the Pumping 
event thread represents an external event of receiving an input 
from the SUT. It is implemented as a function 
set_pump_voltage(ENCLOSING Pump.voltage) call, 
which returns a True value and adjusts its parameter when SUT 
has issued corresponding output. If there is no input from the SUT 
at the moment of CATCH check, the event stream proceeds to the 
next action. This rule demonstrates the ability of AEG to specify 
so-called adaptive test cases [HU] in which the input applied at a 
step depends upon the output sequence that has been observed. As 
mentioned above, the attribute Pump.flow value is shared with 
the Patient event thread. The synchronization is achieved by the 
identical periodicity of both iterations. This rule also simulates 
random occurrence of the Occlusion event. 
NASA-STD-8719.13A [So] defines risk as a function of the 
possible frequency of occurrence of an undesired event, the 
potential severity of resulting consequences, and the uncertainties 
associated with the frequency and severity. 

The environment model can contain a description of hazardous 
states in which the system could arrive, and which could not be 
derived from the SUT model itself. For example, the 
Critical_condition event will occur in certain scenarios 
depending on the SUT outputs received by the test driver and 
random choices determined by the given probabilities. If we run a 
large enough number of (automatically generated) tests, the 
statistics gathered gives some approximation of the risk of 
entering the hazardous state, and a precise measurement of the 
time taken (on the average or worst-case) for the caregiver to 
intervene and correct the situation. This becomes a very 
constructive process of performing experiments with SUT 
behavior within the given environment model. 
By experimenting with increasing or decreasing parameters such 
as BR, p1, and p2, we can conclude what impact those parameters 
have on the probability of hazardous outcome, and identify 
thresholds for SUT behavior in terms of those values. 

4. Case Study II: Paderborn Shuttle System 

The following model specifies part of the Paderborn Shuttle 
System behavior as presented in [PA] ( Fig. 3). 



Shuttle monitor 
software

Shuttle Environment
Model

SUT

send_offer( )
send_notification( )

Shuttle
order( )

confirmation( )

Fig. 3. The Shuttle environment model 
Global parameters: 

ShuttleNum number of shuttles in the model 
StationNum number of stations 
InitAccount initial account 
MaxLimit the threshold requiring shuttle  

maintenance 
TransitFee the fee for a transit between stations 
Wear the wear increment after passing from  

station to station 
Payment transaction fee collected by the  

shuttle 
MaintenanceFee fee for performing shuttle  

maintenance 
Event attributes: 

Shuttle id, at_station, account, start,  
destination, accepted, limit, retired 

The environment model: 
Shuttle_system:  {* Shuttle *} (1..ShuttleNum); 

The behavior of the Shuttle System is represented as a set of 
parallel Shuttle threads. The SUT in this example is software that 
monitors the Shuttle System, sends orders and assigns tasks to 
shuttles. 

Shuttle:  
/ Shuttle.id = Unique_num(); 

 Shuttle.at_station = Rand(1..StationNum); 
 Shuttle.account = InitAccount; 
 Shuttle.limit = 0; 
  Shuttle.retired = false; / 
              (*   WAIT order(  Shuttle.start,  

 Shuttle.destination) 
  WHEN (Shuttle.start == Shuttle.at_station) 

  (  / send_offer(Shuttle.id,  
    calculate(Shuttle.start,  
    Shuttle.destination); / 
  WAIT confirmation(Shuttle.accepted) 
 WHEN (Shuttle.accepted) Move   
  ) 
 *); 

The Shuttle life cycle starts with setting some attribute values. 
After this it waits for an order from the SUT. If the shuttle is 
located on the start station for this order, the shuttle sends its bid 
to the SUT and waits for confirmation. If the bid is accepted, the 
shuttle proceeds with the movement. The WAIT construct 
represents an external event generated by the SUT. It halts the 
corresponding event thread until the expected input from the SUT 
is received, as opposed to the CATCH construct in the previous 
example, which just checks for the presence of input and if not yet 
received, proceeds with the next event or OTHERWISE clause. 

Move:  
WHEN (ENCLOSING Shuttle.limit > MaxLimit) 
 Maintenance 
/ ENCLOSING Shuttle. at_station = 
          next_station(ENCLOSING   

Shuttle.at_station,  
                       ENCLOSINGShuttle.destination); 

 ENCLOSING Shuttle.account -= TransitFee; 
 ENCLOSING Shuttle.limit += Wear; 
 send_notification(ENCLOSING Shuttle.id, 
                    ENCLOSING Shuttle.at_station); / 
CheckAccount  
WHEN (ENCLOSING Shuttle. at_station == 
               ENCLOSING Shuttle.Destination) 

 /ENCLOSING Shuttle. account += Payment;/ 
  ELSE Move; 

The Move event represents the activities of the shuttle during 
transportation. It checks to see if maintenance is needed, and 
updates its at_station attribute using the internal function 
next_station, as well as its account and limit attributes using 
the constants TransitFee and Wear. It sends a notification to 
the SUT each time it “arrives” at a station, and checks to see if its 
account is depleted. It then checks to see if it has reached its 
destination, and increases its account by the constant Payment 
if it reaches its destination. Otherwise, it will call Move 
recursively to continue its journey. 

Maintenance: 
/ENCLOSING Shuttle.account -= 

  MaintenanceFee; 
ENCLOSING Shuttle.limit = 0; / 

CheckAccount; 

CheckAccount:  
WHEN (ENCLOSING Shuttle. Account <= 0) 

( / ENCLOSING Shuttle.retired = True; / 
BREAK ); 

The Maintenance event decrements the shuttle’s account by 
the constant MaintenanceFee and resets its limit attribute to 
zero. The CheckAccount event retires the shuttle by breaking 
the enclosing iteration in the Shuttle rule if the account is 
depleted. 

5. Automatic Test Generation 

For the purpose of scenario (and corresponding test case) 
generation, the AEG approach has several useful features, in 
particular: 

• It is based on a precise and expressive behavior model in 
terms of an event trace with precedence and inclusion re-
lations, well suited to capture hierarchical and concurrent 
behaviors. Since an event may be shared by other events, 
the model can represent synchronization events as well. 

• The control structure suggested by the event grammar 
notation (sequence, alternative, iteration, concurrent event 
set), and the top-down, left-to-right order of traversal seems 



to be intuitive and close to the traditional imperative 
programming style.  

• Data flow of attributes is integrated with the control flow 
(i.e., event trace), and AEG notation provides for ease of 
navigation within the derivation tree (e.g., the 
ENCLOSING event construct, like in ENCLOSING 
CARA_environment  -> Patient.blood _pressure ). 

The first prototype of an automated test generator based on 
attributed event grammars has been implemented at NPS. It takes 
an AEG and generates a test driver in C. 
Some highlights: 

• Parallel event threads (for sets, like {A, B}) are implemented 
by interleaving events/actions within them. 

• All loops in AEG are unfolded either using explicit iteration 
guards, or by assuming a random number of iterations. 
Recursion, if used, can be dealt with in a similar fashion. 

• Attributes are evaluated mostly at generation time, but those 
dependent on SUT outputs (on CATCH or WAIT clauses) 
are postponed until run time. Certain parts of the generated 
event trace may depend on those attribute values (e.g., 
because the delayed attribute participates in the WHEN 
clause); in this case, both alternatives for the expected trace 
segment are generated but protected by Boolean flags, so 
that at the test run time only the alternative for which the 
guard is enabled will be executed. 

• The generated driver contains only simple assignment 
statements and C subroutine calls for interfacing with the 
SUT, guarded by simple flags, making it efficient enough 
and usable for real-time SUT testing. 

6. Conclusions 

This paper suggests an approach to automatic scenario generation 
from environment models for testing of real-time reactive systems 
based on attributed event grammar. The main advantages of the 
suggested approach may be summarized as follows: 

• Environment models specified by attributed event grammars 
provide for automated generation of a large number of 
pseudo-random test drivers. 

• The generated test driver is efficient and could be used for 
real-time test drivers. 

• It addresses the regression testing problem–generated test 
drivers can be saved and reused.  We expect that envi-
ronment models will be changed relatively seldom unless 
significant errors in the requirements are discovered during 
testing. 

• AEG is well structured, hierarchical, and scalable. 

• The environment model may contain events which represent 
hazardous states of the environment (e.g., patient’s 
Critical_condition in CARA). Experiments with the SUT 
embedded in the environment model provide a constructive 
method for quantitative and qualitative assessment of soft-
ware safety.  Such an approach is needed for identifying, 
confirming, and mitigating hazards, such as those arising 

from software faults in the Abbott Lifecare PCA Plus II 
Infusion pump that resulted in loss of life [EC]. 

• Different environment models for different purposes can be 
designed, such as for testing extreme scenarios by increasing 
probabilities of certain events, or for load testing. The 
environment model itself is an asset and could be reused. 

• Environment models can be designed early on, before the 
system design is complete, and can be run as environment 
simulation scenarios. Event traces generated from the AEG 
model represent examples of SUT interaction with the 
environment, and are in fact use cases, that could be useful 
for requirements specification and other prototyping tasks. 
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